
bed itself (see [7, 9], for example). For the formulation of such models it is necessary to 
accumulate test data on heat exchange, as well as on the concentrations of particles and 
their fractional composition in the space above a bed and the dependences of these charac- 
teristics on various physical and hydrodynamic factors. 

NOTATION 

D, outside diameter of tube of the heat-exchange sensor; d, particle diameter; g, free- 
fall acceleration; h, height above the gas-distribution grid; H, Ho, bed height and initial 
bed height; Hc, critical height of the separation zone; j, mass of solid particles falling 
into a "bucket" per unit time; R, residue of particles on a sieve with a mesh di; S, hori- 
zontal cross-sectional area of a "bucket"; u, uo, velocities of filtration and of the onset 
of fluidization; a, a~, ~b, coefficients of external heat exchange in the space above the 
bed, in pure air, and in the fluidized bed, respectively; e, Co, porosities of the bed at 
filtration velocities u and Uo, respectively; %f, coefficient of thermal conductivity of the 
fluidizing gas; ~f, kinematic viscosity of the gas; Ps, Pf, densities of the particles and 
the gas, respectively; Ar = gd3(Ps/pf -- l)/vf2; Nu~ = ~D/%f; Re = uD/~f; Re c = udc/V f. 
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MASS TRANSFER IN A DISPERSE MATERIAL WITH ABSORPTION BY PARTICLES 

Yu. A. Buevich and S. L. Komarinskii UDC 532.72:539.2 

The general principles of an average macroscopic description of diffusion mass transfer 
in disperse media containing surface and bulk sources are elucidated in [I]. In this in- 
vestigation the mentioned principles are applied to an analysis of diffusion in the gaps be- 
tween nonconducting particles on whose surfaces absorption and liberation of the diffusing 
impurity are possible. Such a problem is of direct interest in studying mass transfer pro- 
cesses in suspensions that evaporate and dissolve or grow because of particle condensation 
and crystallization [2], in granular systems with absorption and heterogeneous chemical reac- 
tions [3], in inhomogeneous materials, and particularly, metals with discrete elements of a 
new phase [4], in certain biological systems [5]. An analogous problem was examined earlier 
in [6] where certain simplifying phenomenological representations were utilized. In order to 
obtain the fundamental results in an analytic easily discernible form, we limit ourselves be- 
low to an analysis of diffusion in moderately concentrated systems containing spherical parti- 
cles of identical size. The kinetics of the surface transformations is considered linear while 
the system itself is spatially homogeneous in macroscopic respects. 

We write down the fundamental governing relationships that characterize diffusion in a 
system with non-conducting particles when the diffusing substance either does not generally 
penetrate the particle bulk or is not contained within them with a homogeneous concentration. 
In this case there is a single macroscopic diffusion equation [i] 
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0 (eco)/Ot = -- vq  + h, 

where the mean impurity flux and surface source intensity are written in the form 

q (t, R) = - -  Do (V (eCo)-- n .I c~' (t, RIR') n 'dR')  , 
IR--R ' l~a  

h(t, r) = - kn .f [cg (t, f i r ' ) -  c,l d r ' .  

IR--R'I=a 

(i) 

(2) 

The integration here is over the locations R' of the center of a liberated (test) parti- 
cle such that the point R is on its surface. The quantity c*o that represents the mean im- 
purity concentration at the surface of a fixed test particle is determined from the solution 
of a special problem on the perturbations induced by the latter in a mean field of concentra- 
tion Co. In conformity with the general method [i] a Fourier transform in the time must be 
applied to formulate this problem and the transformed quantities from (2) must be represented 
in the form of linear combinations of the Fourier transforms of scalar and vector quantities 
that completely describe the average concentration field at this point. For e = const the 
most general form of these linear relationships is 

q = - -  DVC o, h = K ( c ,  - -  Co) - -  Lco, (3) 

where D, K, and L are certain, unknown as yet, complex coefficients that depend on the physi- 
cal parameters and the Fourier variable m. Consequently, the transformeddiffusion equation 
(I) takes the form 

Aco - S~Co - -  m ~ ,  = s 2 (co - -  C , ) ,  

s ~ =  K + L + i e m  , m ~ =  K C,  = c .  
D D ' 

( t h e  n o t a t i o n s  f o r  t h e  a p p r o p r i a t e  o r i g i n a l s  a r e  k e p t  f o r  t h e  F o u r i e r  t r a n s f o r m s ) .  

Setting C*o(~, R[R') = Co(m, R) +~(m, r), where r = R-- R', the test particle problem 
can be formulated in the approximation of a moderately concentrated medium thus [i] 

A ~ - - s 2 ~ - =  O, r > a ;  ~ - + 0 ,  r--+oo; 

(5)  
--n'v(c0+~)=~(c,--c0--~), r = a ;  ~ = k / D .  

Let us note that although the problem (5) agrees exactly with that investigated in [6], 
the relationships (2) differ from those used in the paper mentioned. This is related firstly 
to the fact that a method [i] for the strict description of mean concentration fields in 
phases of a heterogeneous disperse medium in the presence of local concentration discontin- 
uities of the particle surfaces was not known. Consequently, it turned out to be necessary 
formally to continue the concentration field defined outside the particles into the region 
within them, for which a purely heuristic assumption was used that a value of the concentra- 
tion equal to its mean on its surface should be ascribed to the center of each particl e . 
Secondly, under such an assumption there was no sense in trying for excess mathematical 
accuracy of the theory, and consequently, the integrals with respect to the locations R' of 
the center of the test particle such that IR - R' I = a would be replaced by simple integrals 
With respect to the particle surface with center at the point R. 

The field Co(m, R) whose linear scale I should be much greater than a figures in the 
boundary condition of the test particle surface in (5). (This is a certain condition for the 
applicability, in principle, of continual methods to the description of diffusion in disperse 
and generally heterogeneous media.) Consequently, it is natural to represent Co(m, R) = co(m, 
R I + r) in the domain r ~ a in the form of a Taylor expansion in powers of the components r. 
Assuming, for simplicity, that Co(m, R) depends only on one such component, by selecting the 
polar axis in the direction Vco(m, R) and introducing the appropriate polar angle e we write 

co (~, R) ~ c~ -6 E ' z  %- M ' z  2 q- N ' z  3 q- T ' z  ~, z = r cos 0. (6)  

Substituting (6) into (4), we arrive at the equalities 

M ' :  s2 ( c ~ - - C , ) ,  N ' :  s2 T '  
2 6 e ' ,  24 (c~--  C,).  (7 )  
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The coefficients in (6) are defined in the usual way in terms of values of Co and its 
derivatives at the point R' and are independent of r. Let us note that terms with N' and T' 
were not taken into account in the theory before, although as follows from the analysis pre- 
sented below, in the long run they do not result in corrections that vanish within the limits 
of the accuracy taken in the final relationships. It is convenient to convert the series (6) 
into an expansion in the Legrendre polynomials Pj (cos 0). Taking (7) into account, we have 

Co~ c ; + - -  d-  l+-~j 
(8) ( $2a2 

sZa2 I s2a2 52a2 ~ (c~ -- C~.) P., 4- aE'P~, Pj =: Pj (cos 0), Co := Co (o3, R' 4- a). 
4- 1 + 10 j a E ' P a 4 - - ~  14- 1 4 1  " - t 5  " 

Using an analogous expansion for co(u, R- r) with coefficients defined at the point R, 
we obtain the relationships 

6 + Po-- + -5-6- 
, t / 

aE'Pl"m--  s2a---~2 14- ( c0 - -C , )Po§  14- 10 ,.~ 
3 lo / 

$2a2 ( sZa 2 ) 2 [ f,2a2 \ 
c~ "~ !-----if- 1 4- - - -~ .  (co - -  C,) Po - -  - -  I 

5 ! +--<,)"eP" 
which are required for evaluation of the integrals in (2). Only components that do not vanish 
under the integration mentioned are retained in (9). It is seen from (6) that the quantity 
Isal is of the order a/Z, i.e., can be considered as a small parameter of continual theory. 
The accuracy of the theory is determined by the number of components taken into account in 
(6) or (8); all the results are written below to the accuracy of quantities of the order of 
s4a ~ - m~a ~ inclusive without additional commentary. 

We seek the solution of the problem (5) in the form 

oo 
,~((0, F) ~B (@) I/2 = Z j K i +  1/2 (sr) Pj (cos e ) ,  (10) 

/=0 

where Ka(x) is the Macdonald function. Within the framework of the accuracy taken, the first 
three terms in the series (i0) must be taken into account. Using the boundary conditions 
from (5) as well as the expansion (8), we arrive at the following expressions for the coef- 
ficients in (I0) after sufficiently awkward calculations: 

BoKl/2(sa)=(14-( la4-sa)-  1 aa 1 4 - ~  1 4 - - - - ~ ; ,  - -  

s2a2 I s2a 2 s2a2~ 

- -  1--aa+~(3--aa) aE', B1Ka/2(sa)= 2 4 - a a 4 -  14-sa , 

[ sZaU(14 -  sa) 1--1 I2 -- (~a -4- $2a2 (4 - -  ffa) ] s2azco-maa2c" 
B2K~/2 (sa) = 3 4- aa 4- 3 4- 3sa 4- s2a 2 ~ 3 

Taking (9) and (11) i n t o  a c c o u n t ,  the  e x p a n s i o n s  (8) and (10) d e f i n e  c o m p l e t e l y  the  com- 
p o n e n t s  i n  t h e  F o u r i e r  t r a n s f o r m s  of  t he  r e l a t i o n s h i p s  (2) t h a t  do no t  v a n i s h  d u r i n g  i n t e g r a -  
t •  w i t h  t h e  a c c u r a c y  needed .  I n t e g r a t i n g ,  we o b t a i n  l i n e a r  r e l a t i o n s h i p s  of  the  same k ind  
as  i n  ( 3 ) .  I d e n t i f y i n g  the  r e l a t i o n s h i p s  men t ioned  (which i s  a c o n d i t i o n  f o r  t he  s e l f - c o n -  
s i s t e n c y  of the theory being developed), we arrive at a system of three complex transcendental 
equations to determine the quantities D, K, and L introduced in (3). In dimensionless form 
we have 

1 = 1 - -  p [ 1 -t- 1 - -  6z 4- (3 - -  26z) s2a2/5 
[3 = T . 2 4- ~Z 2 I- sea 2 ( 1 4- sa) -1 4- 

8z + (48z--5)s2a~/15 2 " s2a2(6z-- 2) ] 
-1- 1 --}-6z4-sa 4- 15 3__}_~z~_sZa2( l 4-sa)(34-3sa4-s2a=) -~ j , (12) 
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x = 396 ( l+sa  xz ) 
1 + 8z + sa + - ~  f ' y = 98z (y + p) f, 

[ = , 1 - -  8z + 2 (2 - -  8z) s2a2/15 __ 1 - -  6z  + (2 - -  6z) s2a2/5 

1 + 8z  + sa 2 + 8z  + s2a ~ (1 + sa) -~ 

sZa 2 2 - -  8 z  

15 3 "{- (~Z + S2a 2 ( l "-{- sa) (3 + 3sa + s2a2) -i 

+ 

, sa = [ z ( x + y + p ) ] ' / L  

The time scale m and the following dimensionless quantities 

"~ = a2/Do, 8 = ka /Do ,  x = KT ,  y = L %  z -1 = [5 = D/Do ,  p = i e x ~  ( 1 3 )  

are introduced here. 

The quantity m has the meaning of a relaxation time of the concentration field at the 
level of individual particles. The smallness of I sai means that the characteristic times of 
variation of the mean concentration should be much greater than ~; i.e., within the framework 
of the continual description we should take toy << i. Moreover, since z ~ 8 ~ 1 it is neces- 
sary that x << i. Let us define the small parameters 

[~-- [50+8 ' • in+ P 1/2 

and let us represent the unknown systems (12) in the form 

2 

[~ [5o[1 ,4 -p [5=~z-{ - t~ (X[~(O•  [5t#)! , 
0 

4 2 

1 0 

2 lnP y~[~) = ' + �9 

o - - -  0 

The meaning of the quantity 8o in (14) becomes clear from the first expansion in (15). 
In general the coefficients in (15) are on the order of one. Certain of the coefficients in 
the expansions for 8 and y vanish identically, which is taken into account at once in writing 
these expansions. For p ~ 0.1 it is required, for the parameter ~ to be small compared with 
one, that 6 << i, i.e., a heterogeneous transformation is realized in the kinetic regime. If 
the latter proceeds in the diffusion regime expressed (6 << i), it is necessary that the in- 
equality p << 1 be satisfied, i.e., the disperse system under consideration be rarefied. 

To obtain analytic representations of the coefficients in (15), the original equations 
(12) must be expanded in powers of the parameters (14). In principle, these calculations are 
simple but quite awkward. We present the result of the calculations only here: 

3[50 , [~(o) 1 , [5(1) 1 [50 = 1 - - p  . . . .  , 
2Po + 8 3[~o 3 ([% + 8) 

[ 5 ( ~ )  [~o [~= (3 /2)x ,  - -  1 

3 ( P o + 8 )  2 ' 9 ( ~ o + 8 )  ' 

[~, = [~o - -  8 _}_ 5[50 - -  48'  ~_ 2 (2[~ o - -  8) + - -3Po  + 26 ," ( 1 6 )  

(2Po + 8) 2 15Po (Po + 8) 1515o (3[50 + 8) 5[3o (2[50 + 8) 

8 815~-I i =  2, 3, 4, 
Xl = [~0_.{_-----'~, X i : (-- 1) i+1 ([30-["8) i , 

x (~ x~ ( @  +2[~ (~ + y(o), x ( l ) =  Xl [ 2  X~+ [~oY(O~3 + 

--{- 4815(1) -'{- (8 - -  3[~~ ~(~ - -  2[~~ ]-[- 2[50 9,(0, (17) 

[~o + 8 J 2Po + 8 

X(2)=Xl[~(2)"Jf---~ "-'Jr- [~Oy(I)6 2 ([~o + ~) 313~ ] + x, [----~ +I-5x~ 
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Here 

~oy (~ 215o-- ~ ] 13o + ~5 
-~ 3 3~o(I~o + ~) + v [5----~ 

[~o - -  38 8 ( 3 

9[~0([5o + 6) ~ -- 3(2[50 + 6) Y~') + 2[50 + 6 

y(o)= [5o~8 , y ( , ) = _  [50--8 , y(~ = ~ [5o+____j_6 
2[50 + 6 [50 + ,5 [5~ 

yr=y(O)(~(o)+y(~ ~) 8( 1 
2 2[5o + ~ y(') + 215o +----~ 

+ y(o, (x(o~ _ i~(~ 

(18) 

2 (2~o -- 8) [5~ (~o -- 6) 2~o -- 6 ~o (~o -- 8) + 2~o -- 8 
~ =  15(~o+6) + (~o+8) 3 5(2~o+6) + (215o+8) z 15(3~o+~)" (19) 

The relationships (16)-(19) completely determine the expansions (15) and, therefore, the 
complex quantities D, K, and L in the Fourier transform (4) of the average diffusion equation, 
as calculated from (14), as well. Applying the inverse Fourier transform, we easily obtain 
the equation itself; the mentioned quantities are here generally replaced by linear operators 
with differentiation and integration with respect to the time. 

In a stationary diffusion process p = O, D = Ds, K = Ks, where D s and K s are real posi- 
tive quantities, and L = O. We have 

D~ :: [5,Do, K, = xd% [5~ - '  [50 { 1 + ~ [[5(o) + P~2 + ~(1) -V'~+ (~(21+ ~) V]}, 
(20) 

where the parameter ~ is defined in (14), and the coefficients of (20), in (16)-(19). 

The dependences of the effective coefficients fls and x s on 8 for different 0 are pre- 
sented in Fig. i. 

In addition to the quantity D s characterizing the intensity of the "transit" diffusion, 
it is expedient to consider the coefficient Ds ~ describing the intensity of diffusion to 
individual particles and thereby characterizing the effective mass transfer between the 
disperse and continuous phases (components) of the system. Such a coefficient can be intro- 
duced by equating the quantity Ks(co -- c,), which is the mass flux density between the phases, 
to the diffusion flux to n particles, calculated in a standard manner, that corresponds to 
the previous value of the heterogeneous reaction rate constant k and the effective diffusion 
coefficient Ds ~ We consequently arrive at the equation obtained in [6] 

D O . (21) 
Xs ~ / 

Substituting x s here from (20), we obtain under stationary conditions 

[50 (x, + 30(x~ + x(~ + 
[5o +,5 J 

D ] = [ 5 o { l + 3 p [ x . , + x ( ~  - 
(22) 

[ I I] )}o0 -{-V'~- 1 +3 9  x3+x(*)-~ 2[5~176 +3Pl~(x~+x(2)+x~')+~]/~-  [5.+6 
[50 + 6  

Dependences of the quantity 8s ~ = Ds~ on p for different 8 are presented in Fig. 2, 
where appropriate dependences of the coefficient ~s = Ds/Do are also shown. 

Easily obtained for the kinetic mode (8 << i) are D s = (I -- 30/2)Do and Ds ~ Do on K s z 
30k/a. In the diffusion mode D s ~ (i -- 0)Do and Ds ~ = (i + 3~o)Do or K s = 3p(l ~ 3~0)Doa "2. 
These results are in agreement with those obtained earlier [6]. 

Let us now examine nonstationary diffusion processes whose continual description is pos- 
sible by using an average diffusion equation of the type (i) if the characteristic frequency 
of variation of the mean concentration satisfies the inequality ~T << i. In the general case 
when the relationship between the parameters IPl and p is arbitrary the application of the in- 
verse Fourier transform to equation (4) with D, K. and L defined according to (13)-(19) will 
result in the appearance of quite awkward integrodifferential operators. We limit ourselves 
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Fig. i. Dependence of the relative diffusion coefficient (a) 
and the parameter x s characterizing the interphasal mass trans- 
fer under stationary conditions (b) on 6 for different p (num- 
bers on the curves). 

here to an analysis of the situation in the two limit cases p >>l|plp| and p << IPl, when the 
expression for ~ from (14) can be simplified somewhat. Setting ~ p2 for definiteness, we 
obtain to the accuracy taken in (15): 

~ ~s + ip~28Tco, 9 ~ i (1/3) g ( o ) ~ ,  x ~. Xs + i (0,5Xl - ] /~  + x2~) 8 ~ .  (23) 

Substituting the representations for D, K and L following from (13) and (23) into (4) 
multiplied by D s, expanding D -~ in a power series in p (and limiting ourselves to just the 
first two terms in this expansion within the limits of the accuracy taken), and then perform- 
ing the inverse Fourier transformation, we obtain an equation for the mean concentration 

1 Oco ~2 T - -  = O (c ,  - -  Co) (24) 
1 q- ~ 9(~ 8-- Ot -- pc2 ~o Olz Ot 

Therefore, the nonstationary diffusion process in a heterogeneous medium of the kind 
under consideration differs, for comparatively low frequencies, from the diffusion in a homo- 
geneous medium in the following respects. Firstly, the effective "capacity" of the space be- 
tween the particles changes: increases for y(O) > 0 (8o > 6) and diminishes in the opposite 
case. Secondly, a relaxation term appears in the expression for the mass flux between the 
phases per unit volume of mixture: the latter starts to depend on not only the stationary 
moving force c, -- Co but also on its rate of change 8(c, -- Co)/3t (it is clear that 8c,/3t = 
dc,/dt). Both these effects were mentioned in [6]. Thirdly, and finally, a relaxation term 
appears with the second derivative with respect to the time, whose sign is determined by the 
sign of the coefficient ~2 defined in (16). The dependences of 82 on ~ for one of the values 
of p are presented in Fig. 3. It is seen that this coefficient is positive for small and 
negative for large 8, while the equation (24) itself belongs, respectively, to the elliptic 
or hyperbolic type. An elliptic equation for a diffusion type process in a heterogeneous 
medium has been obtained earlier in [7], while hyperbolic equations for such a process were 
examined in [8, 9], say. The presence of a term with 8=Co/~t 2 in the diffusion equation 
alters the properties of its solution substantially as compared with those for an equation 
of parabolic type. 

In the second limit case we have by setting p ~ Ipl  = 

~ - - } - i p ~ s ~ o ,  y~i(I/3)y(~ 
(25) 

x ~ ~o 1 + x~  ~ V ~  - -  + i e~  + ix~N~. 

In this case the average diffusion equation is 

( 1 ) Oc o ~2 02Co ._t ~li$o [ 1 + ---f- y(~ F e 9e ~ ... "~ --  D~ACo (1 + x,_[~)(c, --Co) + 
' Ot ~o Ot2 "~ 

-I- x~ P" s O 
V:~ ( t - -  t') + (x., - 913~) ~t~ 2 ~ Ot Jr=t, Ot 

The relationships (25) and the equation (26) describe comparatively high-frequency dif- 
fusion processes. In this case still another important effect appears: the intensity of the 
interphasal mass transfer depends on the process history, i.e., ceases to be local in time. 

(26) 
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The possibility of the appearance of hereditary integrals in the averaged diffusion and heat 
conduction equations has been mentioned in [i0] as well as in [7, ii], 

Extension of the results to broader frequency ranges is not a complication in principle 
but the appropriate equations have a more complicated form than (24) or (26). It is also 
easy to write simplified forms of the average equation that are valid in particular situa- 
tions. For instance, in the limiting kinetic mode of the progress of transformations on the 
particle surfaces (6 -~ 0) for any frequencies satisfying the general condition of applicabil- 
ity of continual theory, we obtain the elliptic equation 

0co 67p~ z 82Co [ 3p~ 
O~- 180(1--3p/2) 2 z~=Ot 2 D o~ 2 Ac~ (27) 

In the limiting diffusion mode (6 ~ ~) we have 

8 - -  

at 

for the low frequencies 

aCo 
~ - - =  eDoAco+ 

at 

--eDoAco+ 3Pn~ (c,--Co)+ V3p e O(c.--co) 
a z 2 at (28) 

3pDo or' a 2 Ic,__Co + t t. 3_~p _}_ _co) I 
8T--~-Jt* J,=,.-V'~(t--~') ] (29) 

for the high frequencies. If 6 grows from zero while remaining small as compared with unity, 
then the source term due to interphasal mass transfer becomes substantial in (27), If 6 
diminishes from a large quantity while remaining greater than one, the term with the second 
derivative then starts to play a part in (28) and (29), where (28) turns out to be hyperbolic 
here. 
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The characteristic relaxation times for the disperse systems of moderate concentration 
are approximately an order less than T = a2/Do. For instance, if we speak of diffusion in a 
heterogeneous material with a solid continuous phase for a ~ 10-6-10 -5 m and Do - 10-*s-10 -.3 
m2/sec, then T varies between i0 and l0 s sec, i.e., the relaxation phenomena due to hetero- 
geneous phenomena at the interphasal boundary are actually capable of influecing the progress 
of real diffusion processes substantially. 

The correspondence between the developed representations and the data of experiment is 
naturally set up in application to specific diffusion processes in specific systems, which 
requires independent analysis of diverse problems. However, the adequacy of these represen- 
tations apparently does not, on the whole, raise doubt and is confirmed fully by results 
achieved during semiempirical insertion of terms with the second derivative of an unknown 
function and with memory integrals into the familiar parabolic diffusion equation [8-11]. 
The prospects for utilizing the hyperbolic equation to describe the concentration curves 
observed during chemical-thermal treatment processes for heterogeneous metals have recently 
been communicated in [12]. 

NOTATION 

a, particle radius; Co, e,, mean concentration in gaps between particles and its equi- 
librium value; C,, effective equilibrium concentration; h, source density; k, reaction rate 
constant; E, M, N, T, expansion coefficients; n, numerical particle concentration; q, mass 
flux; R, R', radius-vectors of the test particle point and center; r = R -- R'; t, time; e, 
bulk concentration of the continuous phase; p = i -- e; T = a2/Do, relaxation time; ~, per" 
turbation of the mean concentration; ~, frequency (the Fourier transform variable). The 
subscript s refers to the stationary state. 
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